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Introduction

• Missing energy signals are important channels for 
new physics searches (e.g., SUSY-like theories 
containing a WIMP dark matter particle). They 
appear in Higgs search channels (with neutrinos).

• The full kinematics is difficult to reconstruct on 
an event-by-event basis with more than one 
missing particles in an event.

• Many kinematic variables and techniques have 
been developed to handle collider signals with 
missing energy.



Introduction

• Early kinematic variables are often heuristic and 
empirical (Meff, HT, ...). Recently, many variables 
based on more theoretically sound footings were 
discovered (MT2,          ,....).

• I will not go over all these variables or 
techniques, but just discuss the basic ideas behind 
them so that one can find a uniform 
understanding of them and look for new ones 
which are useful.
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Kinematic boundaries

• A basic idea is to find the minimum (or maximum) 
mass or energy which is consistent with a given 
event for a hypothesized event topology, using all 
(or most relevant) kinematic constraints (mass-
shell, missing transverse momentum).

• It has natural generalizations to higher-dim 
parameter space.  One can find the region 
consistent with a given event.  The true model 
parameters lie on the boundary (end point) of the 
intersected region of all signal events.



Examples

• Transverse mass MT:

Kinematic Variables and Constraints

• Transverse mass MT: 

The end point of MT distribution is MW (for correct mv), which 

happens when l and v have the same rapidity.
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Kinematic Variables and Constraints

• Transverse mass MT: 

The end point of MT distribution is MW (for correct mv), which 

happens when l and v have the same rapidity.
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T = (α� + αν)2Transverse mass is defined by 

For each event, MT is the 
smallest mother particle (W) 
mass which can be consistent 
with that event, for a given 
invisible particle mass (mν). It 
occurs when l and ν have the 
same rapidity. 

The end point of MT 
distribution is the correct MW.



Examples
• Invariant mass of visible particles a decay chain2 visible particle per chain.

Example: the dilepton edge.
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Point 1 has relatively light sleptons, which is generically nec-

essary if the χ̃0
1 is to provide acceptable cold dark matter [7].

Hence the two-body decay

χ̃0
2 → "̃R" → χ̃0

1"
+"−

is kinematically allowed and competes with the χ̃0
2 → χ̃0

1h de-

cay, producing opposite-sign, like-flavor dileptons. The largest

SM background is tt̄. To suppress this and other SM back-

grounds the following cuts were made on the same signal and

SM background samples used in the two previous sections:

• Meff > 800 GeV

• /ET > 0.2Meff

• ≥ 1 R = 0.4 jet with pT,1 > 100 GeV

• "+"− pair with pT,! > 10 GeV, η! < 2.5

• " isolation cut: ET < 10 GeV in R = 0.2

• Transverse sphericity ST > 0.2

With these cuts very little SM background survives, and the M!!

mass distribution shown in Fig. 11 has an edge near

Mmax
!! = Mχ̃0

2
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If M!! is near its kinematic limit, then the velocity difference

of the "+"− pair and the χ̃0
1 is minimized. Having both leptons

hard requires M!̃/M
2
χ̃0

2

∼ Mχ̃0

1
/M!̃. Assuming this and Mχ̃0

2
=

2Mχ̃0

1
implies that the endpoint in Fig. 11 is equal to the χ̃0

1

mass. An improved estimate could be made by detailed fitting
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Figure 11: M!! for the Point 1 signal (open histogram) and the

sum of all backgrounds (shaded histogram).
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Figure 12: M!!jχ̃0

1
for events with 86 < M!! < 109 GeV in

Fig. 11, using $pχ̃0

1
= Mχ̃0

1
/M!!$p!! for the Point 1 signal (open

histogram) and the SM background (shaded histogram).

of all the kinematic distributions. Events were selected with

Mmax
!! − 10 GeV < M!! < Mmax

!! , and the χ̃0
1 momentum was

calculated using this crude χ̃0
1 mass and

$pχ̃0

1
= (Mχ̃0

1
/M!!) $p!! .

The invariant mass M!!jχ̃0

1
of the "+"−, the highest pT jet, and

the χ̃0
1 was then calculated and is shown in Fig. 12. A peak is

seen near the light squark masses, 660–688 GeV. More study is

needed, but this approach looks promising.

This work would have been impossible without the contribu-
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and X. Tata. It was supported in part by the United States De-
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It defines a boundary between the 
allowed and the forbidden regions 
in the 3-dim mass space.
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The invariant mass of the 2 visible 
particles can be viewed as a 
kinematic constraint on the 
combination of mass parameters:

The end point of the invariant mass 
distribution provides one relation 
among 3 unknown masses.



Examples
• Stransverse mass MT2: (Lester & Summers, hep-ph/9906349)
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The original definition:

It’s a function of the missing particle mass μN. 
The end point of MT2 distribution gives the correct 
mother particle mass mY for the true μN.



Examples

• MT2 can be understood as minimal kinematic 
constraints: (HC & Z. Han, arXiv:0810.5178)

Figure 1: An event with two invisible particles N , each from a decay of a heavy particle Y .

methods using the variable mT2 [9], which is sometimes called the stransverse mass.
mT2 is defined event by event as a function of the invisible particle mass. Its endpoint

or maximal value over many events, denoted by mmax
T2 , gives an estimate of the mother

particle’s mass in the beginning of the decay chain. When the invisible particle’s mass

is unknown, one has to use a trial mass to calculate mT2 and only obtains an estimate
of the mass difference. However, it has been shown in Ref. [10] that if the two mother

particles decay through three-body decays to the invisible particles, a “kink” occurs on
the mmax

T2 curve as a function of the trial mass. The position of the kink is actually at the
true value of the invisible particle mass, which allows us to simultaneously determine

the masses of both the invisible particle and its mother particle. A generalized study
of the kink method is available in Ref. [11].

The purpose of this paper is to clarify the relation between the two mass deter-

mination techniques, i.e., the one using kinematic constraints and the one using the
variable mT2. An apparent difference between the two approaches is that the former
uses the 4-momenta of the visible particles, while the latter is defined solely on the

plane transverse to the beam direction. Nevertheless, due to the lack of total momen-
tum measurement in the beam direction, the longitudinal momenta of the two invisible

particles can be arbitrarily chosen, offsetting some of the information obtained from
the visible particles’ longitudinal momenta. As a consequence, mT2 is equivalent to the
“minimal” kinematic constraints discussed below.

We illustrate our definition of “minimal” constraints in Fig. 1. Two mother par-

ticles of the same mass, mY , each decays to a dark matter particle of mass mN , plus
some visible particles, either directly or through other on-shell particles. Since the

– 3 –

For a given µN , we can examine the mT2 distribution for a large number of events,
which in general has an end point. As discussed in Ref. [9], the mT2 end point gives

the correct mass of the particle Y when the trial mass is equal to the true mass of the
missing particle N , µN = mN . We can therefore use mT2 to determine mY if mN is
known, analogous to the W mass measurement. Moreover, it has recently been shown

[10] that, even if mN is unknown, in some cases, when we plot the mT2 endpoint as a
function of the trial mass µN , there is a kink at µN = mN . Thus both mN and mY can

be determined by studying the mT2 distribution.
We will discuss mass determination using mT2 in Section 3. Before that, we first

give an alternative definition of mT2, using the concept of kinematic constraints.

2.2 mT2 from minimal kinematic constraints

By kinematic constraints, we mean two kinds of constraints imposing on the 4-momenta
of the invisible particles: the mass shell constraints and the measured missing transverse
momentum constraints. Specifically, for the event in Fig. 1, we can write down the

following equations:

p2
1 = p2

2 = µ2
N ,

(p1 + pa)
2 = (p2 + pb)

2 = µ2
Y ,

px
1 + px

2 = /px, py
1 + py

2 = /py, (2.7)

where µY is a trial mass for the particle Y . We call this set of constraints “minimal”
because they correspond to the shortest decay chains. Note that for a given set of
(µN , µY ), the system contains only 6 equations, which are not enough for completely

determining p1 and p2. Nevertheless, Eqs. (2.7) still constrain the possible (µN , µY ).
In particular, we will shortly see that for a given µN , Eqs. (2.7) can be satisfied for

some physical momenta p1 and p2 if and only if µY > mT2(µN). Here, a momentum is
“physical” if all of its components are real and the energy component is positive. In

other words, mT2(µN) can be defined as the boundary of the consistent region on the
(µN , µY ) plane, subject to the minimal constraints in Eqs. (2.7). This fact has been
used in Ref. [12] but without a clear proof.

First, it is easy to show that µY cannot go below mT2 for a fixed µN . For
any (µN , µY ) in the consistent mass region, there exist physical p1 and p2 satisfying

Eqs. (2.7). On the other hand, from Eq. (2.4), we have

µ2
Y = (p1 + pa)

2 = (p2 + pb)
2 ≥ max{(α1 + αa)

2, (α2 + αb)
2}. (2.8)

By definition, mT2 is the minimum of max{(α1 + αa)2, (α2 + αb)2} over all partitions
of the missing transverse momentum. Therefore, we conclude that µY ≥ mT2(µN).
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- Minimal kinematic constraints: 
mass shell constraints of the 
decaying mother particles and 
the missing particles + missing 
transverse momentum 
constraint.

- MT2(μN) of a single event is the 
boundary of the allowed and 
the forbidden regions in the 2-
dim mass space based on the 
minimal kinematic constraints 
of that event.



Examples
• Florida          : (Konar, P et al, arXiv:0812.1042,1006.0653) 

- Minimum center-of-mass parton-level                            
energy consistent with total measured                            
energy and visible momentum.

- A global and fully inclusive variable which can be used 
to measure the mass scale of the parent particles 
originally produced.

event of Fig. 1, or more generally, to the typical energy scale of the event. Since we are

not attempting any event reconstruction, this variable should be defined only in terms of

the global event variables describing the visible particles Xi, namely, the total energy E

in the event, the transverse components Px and Py and the longitudinal component Pz of

the total visible momentum !P in the event. In the same spirit, the only experimentally

available information regarding the invisible particles that we are allowed to use is the missing

transverse momentum ! !PT (see Fig. 1). Of course, the missing transverse momentum ! !PT is

related to the transverse components Px and Py of the total visible momentum !P as

!!PT = − (Px!ex + Py!ey) = −!PT , (1.2)

so that we can use ! !PT and !PT ≡ Px!ex + Py!ey interchangingly. Then, the commonly used

missing energy !ET is nothing but the magnitude !PT of the measured missing momentum !!PT :

!ET ≡ !PT = PT =
√

P 2
x + P 2

y . (1.3)

The main idea of this paper is to propose a new global and inclusive variable ŝmin defined

as follows. ŝmin is simply the minimum value of the parton-level Mandelstam variable ŝ which

is consistent with the observed set of E, Pz and !PT in a given event2. Correspondingly, its

square root ŝ
1/2
min is the minimum parton level center-of-mass energy, which is required in

order to explain the observed values of E, Pz and !ET . Our main result, derived below in

Section 2, is the relation expressing the so defined ŝ
1/2
min in terms of the measured global and

inclusive quantities E, Pz and !ET . In Section 2 we shall prove that ŝ
1/2
min is always given by

the formula

ŝ
1/2
min(Minv) ≡

√

E2 − P 2
z +

√

!E2
T + M2

inv , (1.4)

where the mass parameter Minv is nothing but the total mass of all invisible particles in the

event:

Minv ≡
ninv
∑

i=1

mi =

nχ
∑

i=1

mi , (1.5)

and the second equality follows from the assumption of vanishing neutrino masses (1.1).

As can be seen from its defining equation (1.4), the variable ŝ
1/2
min is actually a function of

the unknown mass parameter Minv. This is the price that we will have to pay for the model-

independence of our setup. This situation is very similar to the case of the Cambridge MT2

variable [9,14,34–37,45,52,53] and its various cousins [33,38,39,41,42,46,48,50,54,55], which

are also defined in terms of the unknown test mass of a missing BSM particle. However,

the Cambridge MT2 variable is a much more model-dependent quantity, since it requires

the identification of two separate decay chains in the events. Furthermore, in some special

cases (more precisely, those of M
(n,n,n−1)
T2 in the language of [54]) MT2 is essentially a purely

transverse quantity, and in this sense would not make full use of all of the available information

2In what follows, instead of !PT we choose to use the more ubiquitous !ET , since the two are essentially the

same, see (1.3).
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Figure 1: The generic event topology under consideration in this paper. Black (red) lines correspond
to SM (BSM) particles. The solid lines denote SM particles Xi, i = 1, 2, . . . , nvis, which are visible
in the detector, e.g. jets, electrons, muons and photons. The SM particles may originate either from
initial state radiation (ISR), or from the hard scattering and subsequent cascade decays (indicated
with the green-shaded ellipse). The dashed lines denote neutral stable particles χi, i = 1, 2, . . . , ninv,
which are invisible in the detector. In general, the set of invisible particles consists of some number
nχ of BSM particles (indicated with the red dashed lines), as well as some number nν = ninv − nχ of
SM neutrinos (denoted with the black dashed lines). The identities and the masses mi of the BSM
invisible particles χi, (i = 1, 2, . . . , nχ) do not necessarily have to be all the same, i.e. we allow for
the simultaneous production of several different species of dark matter particles. The global event
variables describing the visible particles are: the total energy E, the transverse components Px and
Py and the longitudinal component Pz of the total visible momentum "P . The only experimentally
available information regarding the invisible particles is the missing transverse momentum !"PT .

particles in the event, or their identity, e.g. are they SM neutrinos, new BSM dark matter

particles, or some combination of both? These difficulties are illustrated in Fig. 1, where we

show the generic topology of the missing energy events that we are considering in this paper.

As can be seen from the figure, we are imagining a completely general setup – each event

will contain a certain number nvis of Standard Model (SM) particles Xi, i = 1, 2, . . . , nvis,

which are visible in the detector, i.e. their energies and momenta are in principle measured.

Examples of such visible SM particles are the basic reconstructed objects, e.g. jets, photons,

electrons and muons. The visible particles Xi are denoted in Fig. 1 with solid black lines

– 2 –

Figure 3: The same as Fig. 2, but for gluino pair production events with (a) 2-jet gluino decays as in
(3.14) and (b) 4-jet gluino decays as in (3.15). The SUSY masses are fixed as follows: mχ̃0

1
= 100 GeV,

mχ̃0
2

= 200 GeV and mg̃ = 600 GeV. In addition to the variables shown in Fig. 2, here we also plot the

ŝ
1/2

min(2mχ) distribution (dotted line) with the correct value of the invisible mass Minv = 2mχ = 2mχ̃0
1
.

Furthermore, since the two LSPs are identical, we also have

m1 = m2 ≡ mχ , (3.11)

i.e. in what follows we shall denote the true LSP mass with mχ. From (1.5), (3.10) and

(3.11) it follows that the true total invisible mass in any SUSY event is simply

Minv = 2mχ . (3.12)

However, the true LSP mass mχ is a priori unknown, therefore, when we construct our

variable

ŝ
1/2
min(Minv) = ŝ

1/2
min(2mχ) (3.13)

for the SUSY examples, we will have to make a guess for the value of the LSP mass mχ. We

shall denote this trial value by m̃χ, in order to distinguish it from the true LSP mass mχ.

This situation is reminiscent of the case of the Cambridge MT2 variable [9], where in order to

construct the MT2 variable itself, one must first choose a test value for the LSP mass. Our

notation here is consistent with the notation for MT2 used in [54].

We are now ready to describe our SUSY examples. For our study we will choose a

rather difficult signature — jets plus "ET , for which all other proposed methods for mass

determination are bound to face significant challenges. For concreteness, we consider gluino

production, followed by a gluino decay to jets and a neutralino. In Fig. 3 we consider gluino

pair-production (g̃g̃), while in Fig. 4 we show results for associated gluino-LSP production

(g̃χ̃0
1). In addition, we consider two different possibilities for the gluino decays. The first

case, shown in Figs. 3(a) and Figs. 4(a), has the gluino decaying directly to the LSP:

g̃ → jjχ̃0
1 , (3.14)

– 11 –
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Applications
• Mass determinations in SUSY-like theories

To determine a system of N unknown masses, we need at 
least N independent mass relations
O1(pi,visible) = f1(m1, m2, · · · ),
O2(pi,visible) = f2(m1, m2, · · · ),

...

Example: MT2 kink (Cho, et al, arXiv:0709.0288, 
0711.4526; Barr, et al 0711.4008)

Y (!+p)
N (p)

N (q)

V (k)

Partons
P1
P2 Y("+q)

1 + 2 (!)

3 + 4 (")

Figure 1: We assume the two decay chains share a common end-state given in this diagram. All previous
decay products are grouped into the upstream transverse momentum, k.

technique employed applies generically to models involving decays to a massive particle state that leaves the
detector unnoticed.

A powerful feature of the m2C distribution is that, with some mild assumptions, the shape away from
the endpoint can be entirely determined from the unknown mass scale and quantities that are measured.
The ideal shape fit against early data therefore provides an early mass estimate for the invisible particle.
This study is meant to be a guide on how to overcome difficulties in establishing and fitting the shape:
difficulties from combinatoric issues, from differing energy resolutions for the leptons, hadrons, and missing
transverse momentum, from backgrounds, and from large upstream transverse momentum (UTM) 4. As we
shall discuss, UTM actually provides surprising benefits.

The paper is structured as follows: In Section 2, we review m2C and introduce the new observation that,
in addition to an event-by-event lower bound on mY , large recoil against UTM enables one also to obtain
an event-by-event upper bound on mY . We call this quantity m2C,UB. Section 3 describes the modeling and
simulation employed. Section 4 discusses the implications of several effects on the shape of the distribution
including the m12 (in our case mll) distribution, the UTM distribution, the backgrounds, combinatorics,
energy resolution, and missing transverse momentum cuts. In Section 5, we put these factors together and
estimate the performance. We conclude in Section 6 with a discussion about the performance in comparison
to previous work.

2 Upper Bounds on mY from Recoil against Upstream Transverse

Momentum

We will now review the definition of m2C as providing an event-by-event lower bound on mY . In generalizing
this framework, we find a new result that one can also obtain an upper bound on the mass mY when the
two parent particles Y recoil against some large upstream transverse momentum kT .

2.1 Review of the Lower Bound on mY

Fig 1 gives the relevant topology and the momentum assignments. The visible particles 1 and 2 and invisible
particle N are labeled with with momentum α1 and α2 (which we group into α = α1+α2) and p, respectively
β = β1 + β2 and q in the other branch. We assume that the parent particle Y is the same in both branches
so (p+α)2 = (q +β)2. Any earlier decay products of either branch are grouped into the upstream transverse
momentum (UTM) 4-vector momentum, k.

4Our references to UTM correspond to the Significant Transverse Momentum (SPT), pair production category in [16] where
SPT indicates that the relevant pair of parent particles can be seen as recoiling against a significant transverse momentum.

3

3

The experimental feasibility of measuring mg̃ and mχ̃0
1

through mmax
T2 depends on the systematic uncertainty as-

sociated with the jet resolution since mmax
T2 is obtained

mostly from the momentum configurations in which some
(or all) quarks move in the same direction. Our Monte
Carlo study indicates that the resulting error is not so sig-
nificant, so that mg̃ and mχ̃0

1
can be determined rather

accurately by the crossing behavior of mmax
T2 . As a spe-

cific example, we have examined a parameter point in the
minimal anomaly mediated SUSY-breaking (mAMSB)
scenario [7] with heavy squarks, which gives

mg̃ = 780.3 GeV, mχ̃0
1

= 97.9 GeV,

and a few TeV masses for sfermions. We have gener-
ated a Monte Carlo sample of SUSY events for proton-
proton collision at 14 TeV by PYTHIA [8]. The event
sample corresponds to 300 fb−1 integrated luminos-
ity. We have also generated SM backgrounds such as
tt̄, W/Z + jet, WW/WZ/ZZ and QCD events, with less
equivalent luminosity. The generated events have been
further processed with a modified version of fast detec-
tor simulation program PGS [9], which approximates an
ATLAS or CMS-like detector with reasonable efficiencies
and fake rates.

The following event selection cuts are applied to have
a clean signal sample for gluino stransverse mass:

1. At least 4 jets with PT1,2,3,4 > 200, 150, 100, 50
GeV.

2. Missing transverse energy Emiss
T > 250 GeV.

3. Transverse sphericity ST > 0.25.

4. No b-jets and no leptons.

For each event, the four leading jets are used to calcu-
late the gluino stransverse mass. The four jets are di-
vided into two groups of dijets as follows. The highest
momentum jet and the other jet which has the largest
|pjet|∆R with respect to the leading jet are chosen as
the two ‘seed’ jets for division. Here pjet is the jet mo-

mentum and ∆R ≡
√

∆φ2 + ∆η2, i.e. a separation in
azimuthal angle and pseudorapidity plane. Each of the
remaining two jets is associated to a seed jet which makes
the smallest opening angle. Then, each group of the di-
jets is considered to be originating from the same mother
particle (gluino).

Fig.1 shows the resulting distribution of the gluino
stransverse mass for the trial LSP mass mχ = 90 GeV.
The blue histogram corresponds to the SM background.
Fitting with a linear function with a linear background,
we get the endpoint 778.0±2.3 GeV. The measured edge
values of mT2(g̃), i.e. mmax

T2 , as a function of mχ is shown
in Fig.2. Blue and red lines denote the theoretical curves
of (13) and (18), respectively, which have been obtained
in this paper from the consideration of extreme momen-
tum configurations. (A rigorous derivation of (13) and

(18) will be provided in the forthcoming paper [6].) Fit-
ting the data points with the curves (13) and (18), we
obtain mg̃ = 776.3±1.3 GeV and mχ̃0

1
= 97.3±1.7 GeV,

which are quite close to the true values, mg̃ = 780.3 GeV
and mχ̃0

1
= 97.9 GeV. This demonstrates that the gluino

stransverse mass can be very useful for measuring the
gluino and the LSP masses experimentally.
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FIG. 1: The mT2(g̃) distribution with mχ = 90 GeV for the
benchmark point of mAMSB with heavy squarks. Blue his-
togram is the SM background.
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T2 as a function of the trial LSP mass mχ for the
benchmark point of mAMSB with heavy squarks.

Let us now consider the case that squark mass mq̃ is
smaller than the gluino mass mg̃. In such case, the fol-
lowing cascade decay is open;

g̃ → qq̃ → qqχ̃0
1. (19)

In this case also, we consider two extreme momentum
configurations which are similar to those considered for
three body gluino decay, and construct the corresponding

Allowed region

Figure 7: Extreme momentum configuration providing mmax
T2 as a balanced solution for

(a) mχ < mχ̃0
1

and (b) mχ > mχ̃0
1
.

Fig. 7(a) shows a momentum configuration providing the mmax
T2 of (66). In this config-

uration, two gluinos are produced at rest, and each gluino subsequently decays into two
quarks moving in the same direction (i.e. m(1)

vis = m(2)
vis = 0) and one LSP moving in the

opposite direction. Furthermore, two sets of gluino decay products are parallel to each
other (i.e. θ = 0) and all of them are on the transverse plane with respect to the proton
beam direction. This configuration is the first example of extreme momentum configu-
ration considered in Ref. [6]. Although this corresponds to the simplest configuration
providing the mmax

T2 of (66), it might not be useful for constructing mmax
T2 from real collider

data as all quarks are moving in the same direction, so that they can not be identified as
separate particles due to the finite jet resolution.

This difficulty of jet resolution can be partly avoided by the back-to-back transverse
boost of the above extreme configuration, giving the same value of mmax

T2 (mχ). In the
back-to-back boosted configurations, the two di-quark systems are not moving in the
same direction in general, so that can be distinguished from each other in real collider
event. However, the two quarks in each di-quark system are still aligned to each other.
In real collider data analysis, two aligned quarks cannot be identified as separate jets
with realistic jet reconstruction, which will eliminate the events which involve the quarks
moving in the same direction. As the true maximum of mT2 comes from such momentum
configuration, any realistic jet reconstruction will cause a systematic shift of mmax

T2 to
a lower value when one tries to construct mmax

T2 from real collider data. Our analytic
expression (25) for the balanced mT2 solution provides information on how sensitive mT2

is to the angular separation of the involved quarks, with which one can estimate the
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- When there are 2 or more visible particles on each chain, 
MT2,max also has 2 branches and exhibits a kink at the correct 
mass point. (Cho, et al, arXiv:0709.0288, 0711.4526; see also Barr, Gripaios, 
Lester, 0711.4008)
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Figure 1: We assume the two decay chains share a common end-state given in this diagram. All previous
decay products are grouped into the upstream transverse momentum, k.

technique employed applies generically to models involving decays to a massive particle state that leaves the
detector unnoticed.

A powerful feature of the m2C distribution is that, with some mild assumptions, the shape away from
the endpoint can be entirely determined from the unknown mass scale and quantities that are measured.
The ideal shape fit against early data therefore provides an early mass estimate for the invisible particle.
This study is meant to be a guide on how to overcome difficulties in establishing and fitting the shape:
difficulties from combinatoric issues, from differing energy resolutions for the leptons, hadrons, and missing
transverse momentum, from backgrounds, and from large upstream transverse momentum (UTM) 4. As we
shall discuss, UTM actually provides surprising benefits.

The paper is structured as follows: In Section 2, we review m2C and introduce the new observation that,
in addition to an event-by-event lower bound on mY , large recoil against UTM enables one also to obtain
an event-by-event upper bound on mY . We call this quantity m2C,UB. Section 3 describes the modeling and
simulation employed. Section 4 discusses the implications of several effects on the shape of the distribution
including the m12 (in our case mll) distribution, the UTM distribution, the backgrounds, combinatorics,
energy resolution, and missing transverse momentum cuts. In Section 5, we put these factors together and
estimate the performance. We conclude in Section 6 with a discussion about the performance in comparison
to previous work.

2 Upper Bounds on mY from Recoil against Upstream Transverse

Momentum

We will now review the definition of m2C as providing an event-by-event lower bound on mY . In generalizing
this framework, we find a new result that one can also obtain an upper bound on the mass mY when the
two parent particles Y recoil against some large upstream transverse momentum kT .

2.1 Review of the Lower Bound on mY

Fig 1 gives the relevant topology and the momentum assignments. The visible particles 1 and 2 and invisible
particle N are labeled with with momentum α1 and α2 (which we group into α = α1+α2) and p, respectively
β = β1 + β2 and q in the other branch. We assume that the parent particle Y is the same in both branches
so (p+α)2 = (q +β)2. Any earlier decay products of either branch are grouped into the upstream transverse
momentum (UTM) 4-vector momentum, k.

4Our references to UTM correspond to the Significant Transverse Momentum (SPT), pair production category in [16] where
SPT indicates that the relevant pair of parent particles can be seen as recoiling against a significant transverse momentum.
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The experimental feasibility of measuring mg̃ and mχ̃0
1

through mmax
T2 depends on the systematic uncertainty as-

sociated with the jet resolution since mmax
T2 is obtained

mostly from the momentum configurations in which some
(or all) quarks move in the same direction. Our Monte
Carlo study indicates that the resulting error is not so sig-
nificant, so that mg̃ and mχ̃0

1
can be determined rather

accurately by the crossing behavior of mmax
T2 . As a spe-

cific example, we have examined a parameter point in the
minimal anomaly mediated SUSY-breaking (mAMSB)
scenario [7] with heavy squarks, which gives

mg̃ = 780.3 GeV, mχ̃0
1

= 97.9 GeV,

and a few TeV masses for sfermions. We have gener-
ated a Monte Carlo sample of SUSY events for proton-
proton collision at 14 TeV by PYTHIA [8]. The event
sample corresponds to 300 fb−1 integrated luminos-
ity. We have also generated SM backgrounds such as
tt̄, W/Z + jet, WW/WZ/ZZ and QCD events, with less
equivalent luminosity. The generated events have been
further processed with a modified version of fast detec-
tor simulation program PGS [9], which approximates an
ATLAS or CMS-like detector with reasonable efficiencies
and fake rates.

The following event selection cuts are applied to have
a clean signal sample for gluino stransverse mass:

1. At least 4 jets with PT1,2,3,4 > 200, 150, 100, 50
GeV.

2. Missing transverse energy Emiss
T > 250 GeV.

3. Transverse sphericity ST > 0.25.

4. No b-jets and no leptons.

For each event, the four leading jets are used to calcu-
late the gluino stransverse mass. The four jets are di-
vided into two groups of dijets as follows. The highest
momentum jet and the other jet which has the largest
|pjet|∆R with respect to the leading jet are chosen as
the two ‘seed’ jets for division. Here pjet is the jet mo-

mentum and ∆R ≡
√

∆φ2 + ∆η2, i.e. a separation in
azimuthal angle and pseudorapidity plane. Each of the
remaining two jets is associated to a seed jet which makes
the smallest opening angle. Then, each group of the di-
jets is considered to be originating from the same mother
particle (gluino).

Fig.1 shows the resulting distribution of the gluino
stransverse mass for the trial LSP mass mχ = 90 GeV.
The blue histogram corresponds to the SM background.
Fitting with a linear function with a linear background,
we get the endpoint 778.0±2.3 GeV. The measured edge
values of mT2(g̃), i.e. mmax

T2 , as a function of mχ is shown
in Fig.2. Blue and red lines denote the theoretical curves
of (13) and (18), respectively, which have been obtained
in this paper from the consideration of extreme momen-
tum configurations. (A rigorous derivation of (13) and

(18) will be provided in the forthcoming paper [6].) Fit-
ting the data points with the curves (13) and (18), we
obtain mg̃ = 776.3±1.3 GeV and mχ̃0

1
= 97.3±1.7 GeV,

which are quite close to the true values, mg̃ = 780.3 GeV
and mχ̃0

1
= 97.9 GeV. This demonstrates that the gluino

stransverse mass can be very useful for measuring the
gluino and the LSP masses experimentally.
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T2 as a function of the trial LSP mass mχ for the
benchmark point of mAMSB with heavy squarks.

Let us now consider the case that squark mass mq̃ is
smaller than the gluino mass mg̃. In such case, the fol-
lowing cascade decay is open;

g̃ → qq̃ → qqχ̃0
1. (19)

In this case also, we consider two extreme momentum
configurations which are similar to those considered for
three body gluino decay, and construct the corresponding

Figure 7: Extreme momentum configuration providing mmax
T2 as a balanced solution for

(a) mχ < mχ̃0
1

and (b) mχ > mχ̃0
1
.

Fig. 7(a) shows a momentum configuration providing the mmax
T2 of (66). In this config-

uration, two gluinos are produced at rest, and each gluino subsequently decays into two
quarks moving in the same direction (i.e. m(1)

vis = m(2)
vis = 0) and one LSP moving in the

opposite direction. Furthermore, two sets of gluino decay products are parallel to each
other (i.e. θ = 0) and all of them are on the transverse plane with respect to the proton
beam direction. This configuration is the first example of extreme momentum configu-
ration considered in Ref. [6]. Although this corresponds to the simplest configuration
providing the mmax

T2 of (66), it might not be useful for constructing mmax
T2 from real collider

data as all quarks are moving in the same direction, so that they can not be identified as
separate particles due to the finite jet resolution.

This difficulty of jet resolution can be partly avoided by the back-to-back transverse
boost of the above extreme configuration, giving the same value of mmax

T2 (mχ). In the
back-to-back boosted configurations, the two di-quark systems are not moving in the
same direction in general, so that can be distinguished from each other in real collider
event. However, the two quarks in each di-quark system are still aligned to each other.
In real collider data analysis, two aligned quarks cannot be identified as separate jets
with realistic jet reconstruction, which will eliminate the events which involve the quarks
moving in the same direction. As the true maximum of mT2 comes from such momentum
configuration, any realistic jet reconstruction will cause a systematic shift of mmax

T2 to
a lower value when one tries to construct mmax

T2 from real collider data. Our analytic
expression (25) for the balanced mT2 solution provides information on how sensitive mT2

is to the angular separation of the involved quarks, with which one can estimate the
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gluino produces a di-quark system with m(1)
vis = 0 and one LSP, while the second gluino

produces a back-to-back di-quark system with m(2)
vis = mg̃ − mχ̃0

1
and one LSP at rest.

For the second gluino decay set, the visible momentum p
vis(2)
T = 0. Thus, unconstrained

minimum of the second gluino transverse mass, m(2)
T = (mg̃ − mχ̃0

1
) + mχ, occurs when

trial LSP momentum p
χ(2)
T = 0. On the other hand, the first gluino decay product has

|pvis(1)
T | = (m2

g̃ − m2
χ̃0

1
)/2mg̃ and p

χ(1)
T = −p

vis(1)
T , for p

χ(2)
T = 0. Then, the corresponding

transverse mass of the first gluino decay is given by

m(1)
T =

m2
g̃ − m2

χ̃0
1

2mg̃
+

√

√

√

√

(

m2
g̃ − m2

χ̃0
1

2mg̃

)2

+ m2
χ. (69)

Therefore, m(2)
T > m(1)

T if mχ > mχ̃0
1
, though m(2)

T is at the unconstrained minimum value,
so that we have unbalanced mT2 solution, i.e. mT2 = (mg̃−mχ̃0

1
)+mχ for this momentum

configuration. The same unbalanced mT2 solution is obtained for the momentum config-
uration with other values of m(1)

vis because those cases also give m(2)
T ≥ m(1)

T when m(2)
T

is at the unconstrained minimum. Such momentum configurations and the back-to-back
transverse boosted ones would have a sizable |pmiss

T |, so can be used to determine mmax
T2

from real collider data.
To summarize the extremal features of mT2 for the decay of gluino pair when mq̃ > mg̃,

the maximum of mT2 over all events is given by

mmax
T2 (mχ) =

m2
g̃ − m2

χ̃0
1

2mg̃
+

√

√

√

√

(

m2
g̃ − m2

χ̃0
1

2mg̃

)2

+ m2
χ if mχ < mχ̃0

1
,

mmax
T2 (mχ) =

(

mg̃ − mχ̃0
1

)

+ mχ if mχ > mχ̃0
1

(70)

as obtained in (45) and (47) in more generic context. Thus, there is a level crossing of
mmax

T2 at mχ = mχ̃0
1
, yielding a kink structure as shown in Fig. 4(a). If such mmax

T2 -curve
can be constructed from collider data, which will be examined in the next subsection, this
kink structure will enable us to determine the true LSP mass mχ̃0

1
and the gluino mass

mg̃ = mmax
T2 (mχ = mχ̃0

1
) simultaneously.

To see explicitly the extremal features of gluino mT2, a Monte Carlo event sample
of the signal pp → g̃g̃ → qqχ̃0

1qqχ̃
0
1 has been generated in partonic-level, for a SUSY

parameter point in a minimal anomaly mediated SUSY-breaking (AMSB) scenario [19],
which gives

mg̃ = 780 GeV, mχ̃0
1

= 98 GeV, (71)

with a few TeV sfermion masses. The mT2 values for the event sample were then calcu-
lated. Fig.9 (a) and (b) show the resulting mT2 distributions for trial LSP mass mχ = 10
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Figure 1: We assume the two decay chains share a common end-state given in this diagram. All previous
decay products are grouped into the upstream transverse momentum, k.

technique employed applies generically to models involving decays to a massive particle state that leaves the
detector unnoticed.

A powerful feature of the m2C distribution is that, with some mild assumptions, the shape away from
the endpoint can be entirely determined from the unknown mass scale and quantities that are measured.
The ideal shape fit against early data therefore provides an early mass estimate for the invisible particle.
This study is meant to be a guide on how to overcome difficulties in establishing and fitting the shape:
difficulties from combinatoric issues, from differing energy resolutions for the leptons, hadrons, and missing
transverse momentum, from backgrounds, and from large upstream transverse momentum (UTM) 4. As we
shall discuss, UTM actually provides surprising benefits.

The paper is structured as follows: In Section 2, we review m2C and introduce the new observation that,
in addition to an event-by-event lower bound on mY , large recoil against UTM enables one also to obtain
an event-by-event upper bound on mY . We call this quantity m2C,UB. Section 3 describes the modeling and
simulation employed. Section 4 discusses the implications of several effects on the shape of the distribution
including the m12 (in our case mll) distribution, the UTM distribution, the backgrounds, combinatorics,
energy resolution, and missing transverse momentum cuts. In Section 5, we put these factors together and
estimate the performance. We conclude in Section 6 with a discussion about the performance in comparison
to previous work.

2 Upper Bounds on mY from Recoil against Upstream Transverse

Momentum

We will now review the definition of m2C as providing an event-by-event lower bound on mY . In generalizing
this framework, we find a new result that one can also obtain an upper bound on the mass mY when the
two parent particles Y recoil against some large upstream transverse momentum kT .

2.1 Review of the Lower Bound on mY

Fig 1 gives the relevant topology and the momentum assignments. The visible particles 1 and 2 and invisible
particle N are labeled with with momentum α1 and α2 (which we group into α = α1+α2) and p, respectively
β = β1 + β2 and q in the other branch. We assume that the parent particle Y is the same in both branches
so (p+α)2 = (q +β)2. Any earlier decay products of either branch are grouped into the upstream transverse
momentum (UTM) 4-vector momentum, k.

4Our references to UTM correspond to the Significant Transverse Momentum (SPT), pair production category in [16] where
SPT indicates that the relevant pair of parent particles can be seen as recoiling against a significant transverse momentum.
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the smallest opening angle. Then, each group of the di-
jets is considered to be originating from the same mother
particle (gluino).

Fig.1 shows the resulting distribution of the gluino
stransverse mass for the trial LSP mass mχ = 90 GeV.
The blue histogram corresponds to the SM background.
Fitting with a linear function with a linear background,
we get the endpoint 778.0±2.3 GeV. The measured edge
values of mT2(g̃), i.e. mmax

T2 , as a function of mχ is shown
in Fig.2. Blue and red lines denote the theoretical curves
of (13) and (18), respectively, which have been obtained
in this paper from the consideration of extreme momen-
tum configurations. (A rigorous derivation of (13) and

(18) will be provided in the forthcoming paper [6].) Fit-
ting the data points with the curves (13) and (18), we
obtain mg̃ = 776.3±1.3 GeV and mχ̃0

1
= 97.3±1.7 GeV,

which are quite close to the true values, mg̃ = 780.3 GeV
and mχ̃0

1
= 97.9 GeV. This demonstrates that the gluino

stransverse mass can be very useful for measuring the
gluino and the LSP masses experimentally.
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FIG. 1: The mT2(g̃) distribution with mχ = 90 GeV for the
benchmark point of mAMSB with heavy squarks. Blue his-
togram is the SM background.
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FIG. 2: mmax

T2 as a function of the trial LSP mass mχ for the
benchmark point of mAMSB with heavy squarks.

Let us now consider the case that squark mass mq̃ is
smaller than the gluino mass mg̃. In such case, the fol-
lowing cascade decay is open;

g̃ → qq̃ → qqχ̃0
1. (19)

In this case also, we consider two extreme momentum
configurations which are similar to those considered for
three body gluino decay, and construct the corresponding

Figure 7: Extreme momentum configuration providing mmax
T2 as a balanced solution for

(a) mχ < mχ̃0
1

and (b) mχ > mχ̃0
1
.

Fig. 7(a) shows a momentum configuration providing the mmax
T2 of (66). In this config-

uration, two gluinos are produced at rest, and each gluino subsequently decays into two
quarks moving in the same direction (i.e. m(1)

vis = m(2)
vis = 0) and one LSP moving in the

opposite direction. Furthermore, two sets of gluino decay products are parallel to each
other (i.e. θ = 0) and all of them are on the transverse plane with respect to the proton
beam direction. This configuration is the first example of extreme momentum configu-
ration considered in Ref. [6]. Although this corresponds to the simplest configuration
providing the mmax

T2 of (66), it might not be useful for constructing mmax
T2 from real collider

data as all quarks are moving in the same direction, so that they can not be identified as
separate particles due to the finite jet resolution.

This difficulty of jet resolution can be partly avoided by the back-to-back transverse
boost of the above extreme configuration, giving the same value of mmax

T2 (mχ). In the
back-to-back boosted configurations, the two di-quark systems are not moving in the
same direction in general, so that can be distinguished from each other in real collider
event. However, the two quarks in each di-quark system are still aligned to each other.
In real collider data analysis, two aligned quarks cannot be identified as separate jets
with realistic jet reconstruction, which will eliminate the events which involve the quarks
moving in the same direction. As the true maximum of mT2 comes from such momentum
configuration, any realistic jet reconstruction will cause a systematic shift of mmax

T2 to
a lower value when one tries to construct mmax

T2 from real collider data. Our analytic
expression (25) for the balanced mT2 solution provides information on how sensitive mT2

is to the angular separation of the involved quarks, with which one can estimate the
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gluino produces a di-quark system with m(1)
vis = 0 and one LSP, while the second gluino

produces a back-to-back di-quark system with m(2)
vis = mg̃ − mχ̃0

1
and one LSP at rest.

For the second gluino decay set, the visible momentum p
vis(2)
T = 0. Thus, unconstrained

minimum of the second gluino transverse mass, m(2)
T = (mg̃ − mχ̃0

1
) + mχ, occurs when

trial LSP momentum p
χ(2)
T = 0. On the other hand, the first gluino decay product has

|pvis(1)
T | = (m2

g̃ − m2
χ̃0

1
)/2mg̃ and p

χ(1)
T = −p

vis(1)
T , for p

χ(2)
T = 0. Then, the corresponding

transverse mass of the first gluino decay is given by

m(1)
T =

m2
g̃ − m2

χ̃0
1

2mg̃
+

√

√

√

√

(

m2
g̃ − m2

χ̃0
1

2mg̃

)2

+ m2
χ. (69)

Therefore, m(2)
T > m(1)

T if mχ > mχ̃0
1
, though m(2)

T is at the unconstrained minimum value,
so that we have unbalanced mT2 solution, i.e. mT2 = (mg̃−mχ̃0

1
)+mχ for this momentum

configuration. The same unbalanced mT2 solution is obtained for the momentum config-
uration with other values of m(1)

vis because those cases also give m(2)
T ≥ m(1)

T when m(2)
T

is at the unconstrained minimum. Such momentum configurations and the back-to-back
transverse boosted ones would have a sizable |pmiss

T |, so can be used to determine mmax
T2

from real collider data.
To summarize the extremal features of mT2 for the decay of gluino pair when mq̃ > mg̃,

the maximum of mT2 over all events is given by

mmax
T2 (mχ) =

m2
g̃ − m2

χ̃0
1

2mg̃
+

√

√

√

√
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m2
g̃ − m2

χ̃0
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2mg̃
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+ m2
χ if mχ < mχ̃0

1
,

mmax
T2 (mχ) =

(

mg̃ − mχ̃0
1

)

+ mχ if mχ > mχ̃0
1

(70)

as obtained in (45) and (47) in more generic context. Thus, there is a level crossing of
mmax

T2 at mχ = mχ̃0
1
, yielding a kink structure as shown in Fig. 4(a). If such mmax

T2 -curve
can be constructed from collider data, which will be examined in the next subsection, this
kink structure will enable us to determine the true LSP mass mχ̃0

1
and the gluino mass

mg̃ = mmax
T2 (mχ = mχ̃0

1
) simultaneously.

To see explicitly the extremal features of gluino mT2, a Monte Carlo event sample
of the signal pp → g̃g̃ → qqχ̃0

1qqχ̃
0
1 has been generated in partonic-level, for a SUSY

parameter point in a minimal anomaly mediated SUSY-breaking (AMSB) scenario [19],
which gives

mg̃ = 780 GeV, mχ̃0
1

= 98 GeV, (71)

with a few TeV sfermion masses. The mT2 values for the event sample were then calcu-
lated. Fig.9 (a) and (b) show the resulting mT2 distributions for trial LSP mass mχ = 10
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Figure 1: We assume the two decay chains share a common end-state given in this diagram. All previous
decay products are grouped into the upstream transverse momentum, k.

technique employed applies generically to models involving decays to a massive particle state that leaves the
detector unnoticed.

A powerful feature of the m2C distribution is that, with some mild assumptions, the shape away from
the endpoint can be entirely determined from the unknown mass scale and quantities that are measured.
The ideal shape fit against early data therefore provides an early mass estimate for the invisible particle.
This study is meant to be a guide on how to overcome difficulties in establishing and fitting the shape:
difficulties from combinatoric issues, from differing energy resolutions for the leptons, hadrons, and missing
transverse momentum, from backgrounds, and from large upstream transverse momentum (UTM) 4. As we
shall discuss, UTM actually provides surprising benefits.

The paper is structured as follows: In Section 2, we review m2C and introduce the new observation that,
in addition to an event-by-event lower bound on mY , large recoil against UTM enables one also to obtain
an event-by-event upper bound on mY . We call this quantity m2C,UB. Section 3 describes the modeling and
simulation employed. Section 4 discusses the implications of several effects on the shape of the distribution
including the m12 (in our case mll) distribution, the UTM distribution, the backgrounds, combinatorics,
energy resolution, and missing transverse momentum cuts. In Section 5, we put these factors together and
estimate the performance. We conclude in Section 6 with a discussion about the performance in comparison
to previous work.

2 Upper Bounds on mY from Recoil against Upstream Transverse

Momentum

We will now review the definition of m2C as providing an event-by-event lower bound on mY . In generalizing
this framework, we find a new result that one can also obtain an upper bound on the mass mY when the
two parent particles Y recoil against some large upstream transverse momentum kT .

2.1 Review of the Lower Bound on mY

Fig 1 gives the relevant topology and the momentum assignments. The visible particles 1 and 2 and invisible
particle N are labeled with with momentum α1 and α2 (which we group into α = α1+α2) and p, respectively
β = β1 + β2 and q in the other branch. We assume that the parent particle Y is the same in both branches
so (p+α)2 = (q +β)2. Any earlier decay products of either branch are grouped into the upstream transverse
momentum (UTM) 4-vector momentum, k.

4Our references to UTM correspond to the Significant Transverse Momentum (SPT), pair production category in [16] where
SPT indicates that the relevant pair of parent particles can be seen as recoiling against a significant transverse momentum.
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The experimental feasibility of measuring mg̃ and mχ̃0
1

through mmax
T2 depends on the systematic uncertainty as-

sociated with the jet resolution since mmax
T2 is obtained

mostly from the momentum configurations in which some
(or all) quarks move in the same direction. Our Monte
Carlo study indicates that the resulting error is not so sig-
nificant, so that mg̃ and mχ̃0

1
can be determined rather

accurately by the crossing behavior of mmax
T2 . As a spe-

cific example, we have examined a parameter point in the
minimal anomaly mediated SUSY-breaking (mAMSB)
scenario [7] with heavy squarks, which gives

mg̃ = 780.3 GeV, mχ̃0
1

= 97.9 GeV,

and a few TeV masses for sfermions. We have gener-
ated a Monte Carlo sample of SUSY events for proton-
proton collision at 14 TeV by PYTHIA [8]. The event
sample corresponds to 300 fb−1 integrated luminos-
ity. We have also generated SM backgrounds such as
tt̄, W/Z + jet, WW/WZ/ZZ and QCD events, with less
equivalent luminosity. The generated events have been
further processed with a modified version of fast detec-
tor simulation program PGS [9], which approximates an
ATLAS or CMS-like detector with reasonable efficiencies
and fake rates.

The following event selection cuts are applied to have
a clean signal sample for gluino stransverse mass:

1. At least 4 jets with PT1,2,3,4 > 200, 150, 100, 50
GeV.

2. Missing transverse energy Emiss
T > 250 GeV.

3. Transverse sphericity ST > 0.25.

4. No b-jets and no leptons.

For each event, the four leading jets are used to calcu-
late the gluino stransverse mass. The four jets are di-
vided into two groups of dijets as follows. The highest
momentum jet and the other jet which has the largest
|pjet|∆R with respect to the leading jet are chosen as
the two ‘seed’ jets for division. Here pjet is the jet mo-

mentum and ∆R ≡
√

∆φ2 + ∆η2, i.e. a separation in
azimuthal angle and pseudorapidity plane. Each of the
remaining two jets is associated to a seed jet which makes
the smallest opening angle. Then, each group of the di-
jets is considered to be originating from the same mother
particle (gluino).

Fig.1 shows the resulting distribution of the gluino
stransverse mass for the trial LSP mass mχ = 90 GeV.
The blue histogram corresponds to the SM background.
Fitting with a linear function with a linear background,
we get the endpoint 778.0±2.3 GeV. The measured edge
values of mT2(g̃), i.e. mmax

T2 , as a function of mχ is shown
in Fig.2. Blue and red lines denote the theoretical curves
of (13) and (18), respectively, which have been obtained
in this paper from the consideration of extreme momen-
tum configurations. (A rigorous derivation of (13) and

(18) will be provided in the forthcoming paper [6].) Fit-
ting the data points with the curves (13) and (18), we
obtain mg̃ = 776.3±1.3 GeV and mχ̃0

1
= 97.3±1.7 GeV,

which are quite close to the true values, mg̃ = 780.3 GeV
and mχ̃0

1
= 97.9 GeV. This demonstrates that the gluino

stransverse mass can be very useful for measuring the
gluino and the LSP masses experimentally.
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FIG. 1: The mT2(g̃) distribution with mχ = 90 GeV for the
benchmark point of mAMSB with heavy squarks. Blue his-
togram is the SM background.
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FIG. 2: mmax

T2 as a function of the trial LSP mass mχ for the
benchmark point of mAMSB with heavy squarks.

Let us now consider the case that squark mass mq̃ is
smaller than the gluino mass mg̃. In such case, the fol-
lowing cascade decay is open;

g̃ → qq̃ → qqχ̃0
1. (19)

In this case also, we consider two extreme momentum
configurations which are similar to those considered for
three body gluino decay, and construct the corresponding

Figure 7: Extreme momentum configuration providing mmax
T2 as a balanced solution for

(a) mχ < mχ̃0
1

and (b) mχ > mχ̃0
1
.

Fig. 7(a) shows a momentum configuration providing the mmax
T2 of (66). In this config-

uration, two gluinos are produced at rest, and each gluino subsequently decays into two
quarks moving in the same direction (i.e. m(1)

vis = m(2)
vis = 0) and one LSP moving in the

opposite direction. Furthermore, two sets of gluino decay products are parallel to each
other (i.e. θ = 0) and all of them are on the transverse plane with respect to the proton
beam direction. This configuration is the first example of extreme momentum configu-
ration considered in Ref. [6]. Although this corresponds to the simplest configuration
providing the mmax

T2 of (66), it might not be useful for constructing mmax
T2 from real collider

data as all quarks are moving in the same direction, so that they can not be identified as
separate particles due to the finite jet resolution.

This difficulty of jet resolution can be partly avoided by the back-to-back transverse
boost of the above extreme configuration, giving the same value of mmax

T2 (mχ). In the
back-to-back boosted configurations, the two di-quark systems are not moving in the
same direction in general, so that can be distinguished from each other in real collider
event. However, the two quarks in each di-quark system are still aligned to each other.
In real collider data analysis, two aligned quarks cannot be identified as separate jets
with realistic jet reconstruction, which will eliminate the events which involve the quarks
moving in the same direction. As the true maximum of mT2 comes from such momentum
configuration, any realistic jet reconstruction will cause a systematic shift of mmax

T2 to
a lower value when one tries to construct mmax

T2 from real collider data. Our analytic
expression (25) for the balanced mT2 solution provides information on how sensitive mT2

is to the angular separation of the involved quarks, with which one can estimate the
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as obtained in (45) and (47) in more generic context. Thus, there is a level crossing of
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lated. Fig.9 (a) and (b) show the resulting mT2 distributions for trial LSP mass mχ = 10
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Figure 1: We assume the two decay chains share a common end-state given in this diagram. All previous
decay products are grouped into the upstream transverse momentum, k.

technique employed applies generically to models involving decays to a massive particle state that leaves the
detector unnoticed.

A powerful feature of the m2C distribution is that, with some mild assumptions, the shape away from
the endpoint can be entirely determined from the unknown mass scale and quantities that are measured.
The ideal shape fit against early data therefore provides an early mass estimate for the invisible particle.
This study is meant to be a guide on how to overcome difficulties in establishing and fitting the shape:
difficulties from combinatoric issues, from differing energy resolutions for the leptons, hadrons, and missing
transverse momentum, from backgrounds, and from large upstream transverse momentum (UTM) 4. As we
shall discuss, UTM actually provides surprising benefits.

The paper is structured as follows: In Section 2, we review m2C and introduce the new observation that,
in addition to an event-by-event lower bound on mY , large recoil against UTM enables one also to obtain
an event-by-event upper bound on mY . We call this quantity m2C,UB. Section 3 describes the modeling and
simulation employed. Section 4 discusses the implications of several effects on the shape of the distribution
including the m12 (in our case mll) distribution, the UTM distribution, the backgrounds, combinatorics,
energy resolution, and missing transverse momentum cuts. In Section 5, we put these factors together and
estimate the performance. We conclude in Section 6 with a discussion about the performance in comparison
to previous work.

2 Upper Bounds on mY from Recoil against Upstream Transverse

Momentum

We will now review the definition of m2C as providing an event-by-event lower bound on mY . In generalizing
this framework, we find a new result that one can also obtain an upper bound on the mass mY when the
two parent particles Y recoil against some large upstream transverse momentum kT .

2.1 Review of the Lower Bound on mY

Fig 1 gives the relevant topology and the momentum assignments. The visible particles 1 and 2 and invisible
particle N are labeled with with momentum α1 and α2 (which we group into α = α1+α2) and p, respectively
β = β1 + β2 and q in the other branch. We assume that the parent particle Y is the same in both branches
so (p+α)2 = (q +β)2. Any earlier decay products of either branch are grouped into the upstream transverse
momentum (UTM) 4-vector momentum, k.

4Our references to UTM correspond to the Significant Transverse Momentum (SPT), pair production category in [16] where
SPT indicates that the relevant pair of parent particles can be seen as recoiling against a significant transverse momentum.
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The experimental feasibility of measuring mg̃ and mχ̃0
1

through mmax
T2 depends on the systematic uncertainty as-

sociated with the jet resolution since mmax
T2 is obtained

mostly from the momentum configurations in which some
(or all) quarks move in the same direction. Our Monte
Carlo study indicates that the resulting error is not so sig-
nificant, so that mg̃ and mχ̃0

1
can be determined rather

accurately by the crossing behavior of mmax
T2 . As a spe-

cific example, we have examined a parameter point in the
minimal anomaly mediated SUSY-breaking (mAMSB)
scenario [7] with heavy squarks, which gives

mg̃ = 780.3 GeV, mχ̃0
1

= 97.9 GeV,

and a few TeV masses for sfermions. We have gener-
ated a Monte Carlo sample of SUSY events for proton-
proton collision at 14 TeV by PYTHIA [8]. The event
sample corresponds to 300 fb−1 integrated luminos-
ity. We have also generated SM backgrounds such as
tt̄, W/Z + jet, WW/WZ/ZZ and QCD events, with less
equivalent luminosity. The generated events have been
further processed with a modified version of fast detec-
tor simulation program PGS [9], which approximates an
ATLAS or CMS-like detector with reasonable efficiencies
and fake rates.

The following event selection cuts are applied to have
a clean signal sample for gluino stransverse mass:

1. At least 4 jets with PT1,2,3,4 > 200, 150, 100, 50
GeV.

2. Missing transverse energy Emiss
T > 250 GeV.

3. Transverse sphericity ST > 0.25.

4. No b-jets and no leptons.

For each event, the four leading jets are used to calcu-
late the gluino stransverse mass. The four jets are di-
vided into two groups of dijets as follows. The highest
momentum jet and the other jet which has the largest
|pjet|∆R with respect to the leading jet are chosen as
the two ‘seed’ jets for division. Here pjet is the jet mo-

mentum and ∆R ≡
√

∆φ2 + ∆η2, i.e. a separation in
azimuthal angle and pseudorapidity plane. Each of the
remaining two jets is associated to a seed jet which makes
the smallest opening angle. Then, each group of the di-
jets is considered to be originating from the same mother
particle (gluino).

Fig.1 shows the resulting distribution of the gluino
stransverse mass for the trial LSP mass mχ = 90 GeV.
The blue histogram corresponds to the SM background.
Fitting with a linear function with a linear background,
we get the endpoint 778.0±2.3 GeV. The measured edge
values of mT2(g̃), i.e. mmax

T2 , as a function of mχ is shown
in Fig.2. Blue and red lines denote the theoretical curves
of (13) and (18), respectively, which have been obtained
in this paper from the consideration of extreme momen-
tum configurations. (A rigorous derivation of (13) and

(18) will be provided in the forthcoming paper [6].) Fit-
ting the data points with the curves (13) and (18), we
obtain mg̃ = 776.3±1.3 GeV and mχ̃0

1
= 97.3±1.7 GeV,

which are quite close to the true values, mg̃ = 780.3 GeV
and mχ̃0

1
= 97.9 GeV. This demonstrates that the gluino

stransverse mass can be very useful for measuring the
gluino and the LSP masses experimentally.

0

200

400

600

800

1000

1200

1400

1600

1800

200 400 600 800 1000 1200

  153.4    /    47

P1   778.0   2.324

P2   5.293  0.2089

P3   539.5   14.75

P4 -0.4372  0.1424E-01

Gluino stransverse mass (GeV)

E
v

en
ts

/1
0

G
eV

/3
0

0
fb

-1

FIG. 1: The mT2(g̃) distribution with mχ = 90 GeV for the
benchmark point of mAMSB with heavy squarks. Blue his-
togram is the SM background.

700

750

800

850

900

950

0 50 100 150 200 250

(GeV)M
!

(G
eV

)
G

lu
in

o
 s

tr
an

sv
er

se
 m

as
s 

(m
ax

)

Heavy squark

FIG. 2: mmax

T2 as a function of the trial LSP mass mχ for the
benchmark point of mAMSB with heavy squarks.

Let us now consider the case that squark mass mq̃ is
smaller than the gluino mass mg̃. In such case, the fol-
lowing cascade decay is open;

g̃ → qq̃ → qqχ̃0
1. (19)

In this case also, we consider two extreme momentum
configurations which are similar to those considered for
three body gluino decay, and construct the corresponding

Figure 7: Extreme momentum configuration providing mmax
T2 as a balanced solution for

(a) mχ < mχ̃0
1

and (b) mχ > mχ̃0
1
.

Fig. 7(a) shows a momentum configuration providing the mmax
T2 of (66). In this config-

uration, two gluinos are produced at rest, and each gluino subsequently decays into two
quarks moving in the same direction (i.e. m(1)

vis = m(2)
vis = 0) and one LSP moving in the

opposite direction. Furthermore, two sets of gluino decay products are parallel to each
other (i.e. θ = 0) and all of them are on the transverse plane with respect to the proton
beam direction. This configuration is the first example of extreme momentum configu-
ration considered in Ref. [6]. Although this corresponds to the simplest configuration
providing the mmax

T2 of (66), it might not be useful for constructing mmax
T2 from real collider

data as all quarks are moving in the same direction, so that they can not be identified as
separate particles due to the finite jet resolution.

This difficulty of jet resolution can be partly avoided by the back-to-back transverse
boost of the above extreme configuration, giving the same value of mmax

T2 (mχ). In the
back-to-back boosted configurations, the two di-quark systems are not moving in the
same direction in general, so that can be distinguished from each other in real collider
event. However, the two quarks in each di-quark system are still aligned to each other.
In real collider data analysis, two aligned quarks cannot be identified as separate jets
with realistic jet reconstruction, which will eliminate the events which involve the quarks
moving in the same direction. As the true maximum of mT2 comes from such momentum
configuration, any realistic jet reconstruction will cause a systematic shift of mmax

T2 to
a lower value when one tries to construct mmax

T2 from real collider data. Our analytic
expression (25) for the balanced mT2 solution provides information on how sensitive mT2

is to the angular separation of the involved quarks, with which one can estimate the
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T is at the unconstrained minimum value,
so that we have unbalanced mT2 solution, i.e. mT2 = (mg̃−mχ̃0
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as obtained in (45) and (47) in more generic context. Thus, there is a level crossing of
mmax

T2 at mχ = mχ̃0
1
, yielding a kink structure as shown in Fig. 4(a). If such mmax

T2 -curve
can be constructed from collider data, which will be examined in the next subsection, this
kink structure will enable us to determine the true LSP mass mχ̃0
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1 has been generated in partonic-level, for a SUSY
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with a few TeV sfermion masses. The mT2 values for the event sample were then calcu-
lated. Fig.9 (a) and (b) show the resulting mT2 distributions for trial LSP mass mχ = 10
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Applications
• Higgs searches

 (Barr, et al, arXiv:1108.3468)

 (Barr, et al, arXiv:1106.2322)

• h → WW (∗) → �ν�ν

• h → ττ → �νν�νν

m�
T : Smallest Higgs mass 

which can be consistent 
with a given event by 
requiring one W on-shell.
The end point is the true 
Higgs mass. 

2

the three-momentum of the other neutrino is then fixed
uniquely by the measured /p, which fixes the transverse
components, and by (ii), which fixes the longitudinal
component.3) Away from the limit of small mW , and
in particular for mh < 2mW , the extra constraint re-
quiring one of the W -bosons to be on-shell implies that
m�

T > mtrue
T . Moreover, since mtrue

T < m�
T ≤ mh for

signal events, we might hope for an increased number of
signal events, relative to background, in a region below
mh, increasing our ability to discriminate between the
background-only and signal-plus-background hypotheses
in an analysis based on counting events in such a region.

We now compare the performance of the two variables
mtrue

T and m�
T, using a simulation of LHC events corre-

sponding to 10 fb−1 of integrated luminosity. We use the
HERWIG 6.505 [18, 19] Monte Carlo generator, with LHC
beam conditions (

√
s = 7 TeV). Our version of the gener-

ator includes the fix to the h → WW (∗) spin correlations
described in [20].

We generate unweighted events for Standard Model
Higgs boson production (gg → h) and for the dominant
background, qq̄ → WW . The detector resolution is simu-
lated by smearing the magnitude of the missing momen-
tum vector with a Gaussian resolution function of width
σ/pT

//pT = 0.4GeV1/2/
√
Σ where Σ is the sum of the |�pT|

of all visible fiducial particles.
Selection cuts are applied based on [21, 22], requiring:

• Exactly two leptons � ∈ {e, µ} with pT > 15 GeV
and |η| < 2.5

• Missing transverse momentum, �pT > 30 GeV

• 12 GeV < m�� < 300 GeV

• No jet with pT > 20 GeV

• Z → ττ rejection: the event was rejected if |mττ −
mZ | < 25 GeV and 0 < xi < 1 for both i ∈ {1, 2}4

• Relative azimuth ∆φ�� < ∆φmax
��

• Transverse momentum of the W pair system,
pT WW > 30GeV

• The appropriate transverse mass (m�
T or mtrue

T )
must satisfy 0.75×mh < mT < mh.

3 Similar arguments show that the mbound
T variable does not co-

incide with mtrue
T in the same limit: to enforce the intermediate

mass-shell constraints, both neutrinos would have to be assigned
vanishing three-momentum, which would be incompatible with
the observed non-vanishing /p.

4 The variable xi is the momentum fraction of the ith tau carried
by its daughter lepton and mττ is the di-tau invariant mass.
They are calculated using the approximation that each τ was
collinear with its daughter lepton.
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FIG. 1: Simulation of h → WW signal (for mh ∈ {130, 160,
200}GeV) for the variables mtrue

T (above), m�
T (middle) and

mbound
T (below). The shading gives the shape of the dominant

WW background. It should be noted that a logarithmic y-
axis scale (and displaced x-axis) has been used when plotting
mbound

T .

The value chosen for ∆φmax
�� is either 1.3 or 1.8, where

we use the value for which the larger discovery potential
is expected.

In Fig. 1 we show sample distributions of the variables
mtrue

T and m�
T for both the signal (for various mh) and
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Introduction

There is much to be gained from constructing event
variables which place maximal lower-bounds on well de-
fined quantities of interest. Such variables can be used
to select events containing new-physics when the scale of
the property which is being “bounded” is higher in the
signal than in the most important backgrounds. One
may construct the single variable that bounds an arbi-
trary scale by considering that scale (often a mass) to be
a function of all the unknowns in the event (often compo-
nents of invisible particle momenta). Having done this,
the minimal value of this scale over all possible values of
those unknowns, subject to any constraints that need to
be asserted to enforce consistency, is the bound in ques-
tion.1 The transverse mass is an example of such a max-
imal lower-bound variable: when applied to a W → lν
event in a hadron collider it returns the largest possible
lower-bound on the W -mass that may be derived from
that event (given access to the lepton four-momentum
and the missing transverse two-momentum only) assum-
ing that there were no confounding sources of missing
transverse momentum.

Separating Z → ττ from h → ττ

The main background to searches for h → ττ is
Z → ττ , so following the general procedure described
above, one would expect that the best way to separate
the signal from this irreducible background is to con-
struct the variable which provides the maximal lower
bound for the “parent” mass (i.e. mH or mZ in signal
and background respectively) given the observed visible
decay products of the taus together with the net miss-
ing transverse momentum. In a “perfect” detector, such
a variable (we will call it m

Higgs−bound

ττ ) should, by con-
struction, place all the irreducible background Z → ττ
events at values of mHiggs−bound

ττ below mZ , leaving the
region mZ < m

Higgs−bound

ττ ≤ mh available to the signal

1 In [1] a recent attempt has been made to formally write down the
steps that are needed to construct such maximal lower-bounding
variables for a wide class of circumstances.
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Discovery of the Higgs boson in any decay channel depends on the existence of event variables or

cuts with sensitivity to the presence of the Higgs. We demonstrate the non-optimality of the kine-

matic variables which are currently expected to play the largest role in the discovery (or exclusion)

of the Higgs at the LHC in the ττ channel. Any LHC collaboration looking for opportunities to

gain advantages over its rivals should, perhaps, consider the alternative strategy we propose.

Introduction

There is much to be gained from constructing event
variables which place maximal lower-bounds on well de-
fined quantities of interest. Such variables can be used
to select events containing new-physics when the scale of
the property which is being “bounded” is higher in the
signal than in the most important backgrounds. One
may construct the single variable that bounds an arbi-
trary scale by considering that scale (often a mass) to be
a function of all the unknowns in the event (often compo-
nents of invisible particle momenta). Having done this,
the minimal value of this scale over all possible values of
those unknowns, subject to any constraints that need to
be asserted to enforce consistency, is the bound in ques-
tion.1 The transverse mass is an example of such a max-
imal lower-bound variable: when applied to a W → lν
event in a hadron collider it returns the largest possible
lower-bound on the W -mass that may be derived from
that event (given access to the lepton four-momentum
and the missing transverse two-momentum only) assum-
ing that there were no confounding sources of missing
transverse momentum.

Separating Z → ττ from h → ττ

The main background to searches for h → ττ is
Z → ττ , so following the general procedure described
above, one would expect that the best way to separate
the signal from this irreducible background is to con-
struct the variable which provides the maximal lower
bound for the “parent” mass (i.e. mH or mZ in signal
and background respectively) given the observed visible
decay products of the taus together with the net miss-
ing transverse momentum. In a “perfect” detector, such
a variable (we will call it m

Higgs−bound

ττ ) should, by con-
struction, place all the irreducible background Z → ττ
events at values of mHiggs−bound

ττ below mZ , leaving the
region mZ < m

Higgs−bound

ττ ≤ mh available to the signal

1 In [1] a recent attempt has been made to formally write down the
steps that are needed to construct such maximal lower-bounding
variables for a wide class of circumstances.
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FIG. 1: At Monte Carlo truth level, and for signal only,

the distribution of the new mHiggs−bound

ττ variable (black) is

compared to the existing variables mTrue

T [2, 3] (magenta),

mEffective
ττ [4] (blue) and mVisible

ττ [5, 6] (cyan) for a 120 GeV

Higgs decaying to ττ . All histograms are scaled to unit area.
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Degenerate constraint equations
• The constraint equations restrict the allowed 

phase space in some hyper-surface in the space of 
all visible and invisible momenta.

• Boundaries or end points arise                            
when it’s projected to the                                   
subspace of visible momenta. 

• The boundaries are often where signal events 
accumulate and hence useful for searches. The 
events at or near the boundaries are also most 
important for mass measurements.
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Degenerate constraint equations
• Alternative point of view: boundary events make 

the (tangent of) constraint equations degenerate. 
Existence of solutions implies certain relations 
among coefficients which depends on the masses.

• End points occur because some constraint 
equations are quadratic (mass-shell). It has been 
shown that the invariant mass and MT2 end points 
can be understood in this way. (Kim, I.-W. arXiv:0910.1149)
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Degenerate constraint equations

• However, not all degeneracies occur at the end 
points.  There may be more special events to use 
beyond those at the end points.

• We will study an example in which the degeneracy 
occurs between linear equations. It allows us to do 
the mass measurement for a topology which was 
not possible before.



A single short decay chain

• We consider the mass measurement for the 
following decay chain at a hadron collider.

!
!
!
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Figure 1. Decay chain

ric decay chains. There have been attempts to generalize the techniques developed
for symmetric decay chains to asymmetric chains, but so far only to different mother

or daughter particle masses between the two chains, and some prior knowledge about
the asymmetry of the events is required. To be complete general, it is worth to find

kinematic techniques or variables which can be applied to a single decay chain. Then
they can be used even in a collection of different types of signal events as long as they

contain one identical decay chain. In the case of limited statistics, they may give the
first estimate of the masses before there are enough symmetric-chain events for analysis.

In fact, the early attempts of the mass determination in SUSY-like events were

based on single decay chains. However, to obtain enough kinematic constraints, long
decay chains with at least 3 steps are required. There are many invariant mass com-

binations which can be formed with 3 or more visible particles, which provide enough
mass relations among the invisible particles in the decay chain. So far there is no tech-
nique for extracting the masses in a shorter decay chain with only two or less visible

particles. Näıvely one would think that this task is impossible. For example, consider
a decay chain starting with a mother particle Y which decays through an intermediate

on-shell state X and ends up with the missing particle N as shown in Fig. 1. There is
one visible particle from each step of the decays and the visible particles are labeled as

1 and 2 in the figure. There are three invisible particles (Y, X, N) in the decay chain
but there is only one invariant mass that can be formed from the two visible particles.
One invariant end point certainly cannot determine three masses, but only provides

one relation among them. It is also well-known that the shape of the invariant mass
distribution depends on the spin of the intermediate particle X and the chiral nature

of its couplings, but not the masses. One needs to find two more independent mass
relations in order to solve for the three masses. In this work we make the first attempt

to measure the invisible particle masses of the short single decay chain of Fig. 1. We
show that in certain cases, it is possible to determine all three masses in the decay
chain. We are not aiming for high accuracies. After all, this is a difficult case so even

a 30%–50% measurement is infinitely better than not being able to determine them at

– 3 –

There is at least another missing particle in the 
event, so the transverse momentum of N is 
unknown.

HC and Jiayin Gu, to appear



Motivations
• Appears in many models with WIMP dark matter.

• Most recent studies focus on symmetric decay 
chains, but there may be much more asymmetric-
chain events than symmetric ones.

• Mass measurements were only done for long 
decay chains for single decay chains. 

• It’s a subprocess of many more complicated 
events.

18

FIG. 6: The “ditau” decay topology.

the topology of Figure 4 since each tau decay also generates invisible particles (neutrinos), so the

appropriate topology is that of Figure 6. More about chains with multiple invisible particles can

be found in Section 4.6. Helicity effects in tau distributions are discussed in [72–74].

3.5. Constraints from the qll-like chain

If the “dilepton” topology of Section 3.4 is extended by one two-body decay, we reach a chain

having three successive two-body decays, resulting in a final state consisting of three visible (fre-

quently but not always light) particles, and one (frequently but not always massive) invisible

particle.

The most frequently considered context in which this topology is used is the decay of q̃ →

qχ̃0
2 → ql±�̃∓ → ql±l∓χ̃0

1

q̃ χ̃0
1

χ̃0
2

q

�̃∓R

l±near l∓far

which has led to this chain being known as the “qll-chain”. In fact the qll case is really a special

one in the sense that it assumes particular identities of particles, and hence admits only particular

possibilities for ambiguities. This chain was first suggested as a means of measuring sparticle

masses in [42, 75]. These early works proposed that, following on from the di-lepton edge technique

described above, other one-dimensional invariant mass distributions be plotted involving the quark

(or rather jet) momenta in addition to the momenta of the leptons. As before, relativistic kinematics

impose an upper limit on any particular invariant mass distribution, and the position of any

particular upper limit (or more generally kinematic end-point, or in some cases just “end-point”)

22

FIG. 7: The “gluino” decay chain.

the other Lorentz invariants discussed above offer the simplest, and probably the most easily

measurable distributions from which to extract information about the masses of the parents. But

is this suggestion correct? It is certainly being challenged. These one-dimensional invariant mass

distributions can all be thought of as “projections” of the higher-dimensional space in which the

measurements live, onto a single dimension. The full three-dimensional shape of the qll-chain has

been noted in [83], and there are many promising proposals to use fits to structures in observables of

two (and higher) dimensions in order to gain information from correlations that are not otherwise

available in one-dimensional distributions [69, 70, 79, 82, 83]. In principle there is a lot more

information available in these higher-dimensional distributions – but whether that information is

easier or harder to extract than that from the one-dimensional distributions will depend to a large

extent on the relative degree to which the systematic uncertainties can be understood/controlled

by the experimental collaborations in the two cases.

3.6. Constraints from the qqll-like chain

Adding a further two-body decay to the “qll” chain produces the topology shown in Figure 7,

which sometimes called the “qqll” or “gluino” chain since the most studied example has been

g̃ → q̄q̃ → q̄qχ̃0
2 → q̄ql±�̃∓ → q̄ql±l∓χ̃0

1. Many of the kinematic endpoints for this longer chain can

be found in the results of section section 3.4 and section section 3.5 (or relabellings thereof). The

new endpoints, including the maximum of the four-body qqll distribution have been calculated

using massless approximation for the visible particles [80] assuming all particles on the backbone

are on mass-shell.3 These can depend on any of the other five masses in the problem (g̃, q̃, χ̃0
2, �̃

and χ̃0
1). The same chain has been used to put constraints on the spin of the gluino [86]. When

dealing with chains of this length containing many jets in the final state, most studies have found it

necessary to have addional information about the jets (for example bottom-quark tags) to reduce

ambiguities due to combinatorics and ISR etc.

3 Contrast how little has been written [85] about the case where some particles on the backbone of the qqll-chain
are off mass-shell.

Allanach, B.C. et al,  Gjelsten, B. K. et al, 
Miller, D.J. et al, ... 

Kawagoe, K. et al, ...



Invariant mass end point

• 2 visible particles, only one invariant mass can be 
formed. 
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Figure 1. Decay chain

ric decay chains. There have been attempts to generalize the techniques developed
for symmetric decay chains to asymmetric chains, but so far only to different mother

or daughter particle masses between the two chains, and some prior knowledge about
the asymmetry of the events is required. To be complete general, it is worth to find

kinematic techniques or variables which can be applied to a single decay chain. Then
they can be used even in a collection of different types of signal events as long as they

contain one identical decay chain. In the case of limited statistics, they may give the
first estimate of the masses before there are enough symmetric-chain events for analysis.

In fact, the early attempts of the mass determination in SUSY-like events were

based on single decay chains. However, to obtain enough kinematic constraints, long
decay chains with at least 3 steps are required. There are many invariant mass com-

binations which can be formed with 3 or more visible particles, which provide enough
mass relations among the invisible particles in the decay chain. So far there is no tech-
nique for extracting the masses in a shorter decay chain with only two or less visible

particles. Näıvely one would think that this task is impossible. For example, consider
a decay chain starting with a mother particle Y which decays through an intermediate

on-shell state X and ends up with the missing particle N as shown in Fig. 1. There is
one visible particle from each step of the decays and the visible particles are labeled as

1 and 2 in the figure. There are three invisible particles (Y, X, N) in the decay chain
but there is only one invariant mass that can be formed from the two visible particles.
One invariant end point certainly cannot determine three masses, but only provides

one relation among them. It is also well-known that the shape of the invariant mass
distribution depends on the spin of the intermediate particle X and the chiral nature

of its couplings, but not the masses. One needs to find two more independent mass
relations in order to solve for the three masses. In this work we make the first attempt

to measure the invisible particle masses of the short single decay chain of Fig. 1. We
show that in certain cases, it is possible to determine all three masses in the decay
chain. We are not aiming for high accuracies. After all, this is a difficult case so even

a 30%–50% measurement is infinitely better than not being able to determine them at

– 3 –

Y X N 2 1

particle left-handed down squark 2nd chargino anti-sneutrino up quark electron

mass[GeV] 777 465 292 0 0

Table 1. A summary of the decay chain studied in Section 2. The visible Standard Model

particles are treated as being massless.
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Figure 2. The histogram of the invariant mass of the two visible particles. In the massless

limit (p1 + p2)2 = 2p1p2. The vertical line indicates the value of ∆1∆2

m2

X
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energy ratio of the events where the two visible particle are parallel. However, such
events are rare and may not be usable in real experiments. To avoid these problems, a
natural thought is to look at the “nearby” events to see if one can extrapolate to the

point that we are interested in. To do that we should examine the event distribution
in the two-dimensional space of the energy ratio of the two visible particles and their

invariant mass.
For this purpose a sample of events from such a decay chain are generated with

the SUSY LM2 point chosen as the underlying model. The masses of the particles
in the decay chain are given in Table 1.2 104 events are generated using MadGraph
4.4.49 at the parton level to reduce the statistical fluctuations. In this section we

do not include experimental smearing and backgrounds, and assume no combinatorial
problem. These issues will be discussed in the next section when we deal with realistic

experimental situations. The invariant mass-squared distribution of the two visible
particles is shown in Fig. 2. The distribution has an end point which can be clearly

identified. The triangular shape of the distribution is a characteristic of the spin-1/2
intermediate state (chargino) in the decay chain. Now we would like to look at the
distribution of the energy ratios. Because in hadron colliders, the center of mass of the

2This point has been ruled out at the LHC. However, we just use this point for the purpose of
illustration. The method that we develop is independent of the overall mass scale of the spectrum.

– 6 –

The end point provides one relation among 3 
unknown masses, but cannot determine 3 
masses individually.

(p1 + p2)
2
��
max

=
(m2

Y −m2
X)(m2

X −m2
N )

m2
X

≡ ∆1∆2

m2
X



Constraint equations
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ric decay chains. There have been attempts to generalize the techniques developed
for symmetric decay chains to asymmetric chains, but so far only to different mother

or daughter particle masses between the two chains, and some prior knowledge about
the asymmetry of the events is required. To be complete general, it is worth to find

kinematic techniques or variables which can be applied to a single decay chain. Then
they can be used even in a collection of different types of signal events as long as they

contain one identical decay chain. In the case of limited statistics, they may give the
first estimate of the masses before there are enough symmetric-chain events for analysis.

In fact, the early attempts of the mass determination in SUSY-like events were

based on single decay chains. However, to obtain enough kinematic constraints, long
decay chains with at least 3 steps are required. There are many invariant mass com-

binations which can be formed with 3 or more visible particles, which provide enough
mass relations among the invisible particles in the decay chain. So far there is no tech-
nique for extracting the masses in a shorter decay chain with only two or less visible

particles. Näıvely one would think that this task is impossible. For example, consider
a decay chain starting with a mother particle Y which decays through an intermediate

on-shell state X and ends up with the missing particle N as shown in Fig. 1. There is
one visible particle from each step of the decays and the visible particles are labeled as

1 and 2 in the figure. There are three invisible particles (Y, X, N) in the decay chain
but there is only one invariant mass that can be formed from the two visible particles.
One invariant end point certainly cannot determine three masses, but only provides

one relation among them. It is also well-known that the shape of the invariant mass
distribution depends on the spin of the intermediate particle X and the chiral nature

of its couplings, but not the masses. One needs to find two more independent mass
relations in order to solve for the three masses. In this work we make the first attempt

to measure the invisible particle masses of the short single decay chain of Fig. 1. We
show that in certain cases, it is possible to determine all three masses in the decay
chain. We are not aiming for high accuracies. After all, this is a difficult case so even

a 30%–50% measurement is infinitely better than not being able to determine them at
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all. Any information obtained or techniques developed here can also be used in more
complicated event topologies which contain this decay chain as a subprocess to provide

additional constraints. Furthermore, the variables used for mass determinations are of-
ten useful to separate signals from backgrounds and hence can be used in new physics
search in the first place.

A crucial observation is that the masses are mostly determined by certain special
events (and their nearby events). Those events often lie at the end point or the peak

of some kinematic distribution. Mathematically, those special events make the kine-
matic constraint equations degenerate. In order for the degenerate equations to have
solutions (since the correct masses should be consistent with those events), this implies

certain relations among the coefficients of the constraint equations, which depend on
the invisible particle masses. In this way we obtain mass relations among the invisible

particles. It has been shown that the common variables such as the end points of the
invariant mass and the transverse mass variables MT , MT2 can all be understood in

this way. There some constraint equations used are quadratic so the special events lie
at the end point of a kinematic distribution. The regions near these points are often
where signal events accumulate due to the phase space restriction, so sometimes they

can also be used to select signals over backgrounds.
For the decay chain shown in Fig. 1, the constraint equations are

p2Y = m2
Y , (1.1)

(pY − p2)
2 = m2

X , (1.2)

(pY − p2 − p1)
2 = m2

N , (1.3)

where p2 and p1 are the 4-momenta of the visible particles from the decays of Y and X
respectively and for simplicity we take them to be massless p22 = p21 = 0 which is a good

approximation for most SM visible particles. Since we don’t use the information from
the other decay chain, there is no constraint from the missing transverse momentum.

Taking the differences of these three equations, we can obtain two linear equations in
the unknown momentum pY ,

2p2 pY = m2
Y −m2

X ≡ ∆2, (1.4)

2p1 pY − 2p1 p2 = m2
X −m2

N ≡ ∆1, (1.5)

where Delta1,2 are defined as the corresponding mass differences. Together with one
of the quadratic equation above, we have all the independent kinematic constraints.
From the discussion in the previous paragraph we should look at the events which make

these equations degenerate. (For the quadratic equation we just take the tangent on

– 4 –

Taking the differences, we get 2 linear equations,
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assuming

There is another type of special events: when

We get another relation among 3 masses.

p21 = p22 = 0.



New kinematic variable

• Event distribution in log(ET1/ET2) vs. 2p1.p2 space

50000 100000 150000 200000 250000 300000 2p1p2!GeV2"

!3

!2
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1
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3

log#ET1$ET2%

Figure 3. The scatter plot of log (ET1/ET2) vs. 2p1p2 for all the events.

parton collision often has a large longitudinal boost relative to the laboratory frame, it
is custom to use the transverse energies of the outgoing visible particles instead as they

are invariant under the longitudinal boosts. It is obvious for parallel massless visible
particles, ET1/ET2 = E1/E2. We also take the logarithm of the energy ratio to make

it more symmetric between the two particles. The two-dimensional distribution in the
space of log(ET1/ET2) vs. invariant mass-squared 2p1 p2 is shown in Fig. 3. One can

clearly see some interesting structure of the distribution. As expected, the distribution
of log (ET1/ET2) converges to a point at log(∆1/∆2) when the invariant mass goes to
zero. Away from that point, the log (ET1/ET2) distribution spread out and for a fixed

invariant mass, it is more or less symmetric about some center point which moves up as
the invariant mass increases. This qualitative feature already tells us some important

information about the decay chain. It allows us to figure out which visible particle
comes from the first step decay and which comes from the second in the case where the
two visible particles are distinct, because if we switch E1T and E2T the distribution will

move down instead. In our example it means that the quark jet being emitted before
the lepton can be determined rather than assumed.

To understand this distribution, let us rewrite Eqs. (1.4), (1.5) as

2p1pY = ∆1 + 2p1p2, (2.1)

2p2pY = ∆2, (2.2)

– 7 –

Y X N 2 1

particle left-handed down squark 2nd chargino anti-sneutrino up quark electron

mass[GeV] 777 465 292 0 0

Table 1. A summary of the decay chain studied in Section 2. The visible Standard Model

particles are treated as being massless.
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Figure 2. The histogram of the invariant mass of the two visible particles. In the massless

limit (p1 + p2)2 = 2p1p2. The vertical line indicates the value of ∆1∆2
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X
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energy ratio of the events where the two visible particle are parallel. However, such
events are rare and may not be usable in real experiments. To avoid these problems, a
natural thought is to look at the “nearby” events to see if one can extrapolate to the

point that we are interested in. To do that we should examine the event distribution
in the two-dimensional space of the energy ratio of the two visible particles and their

invariant mass.
For this purpose a sample of events from such a decay chain are generated with

the SUSY LM2 point chosen as the underlying model. The masses of the particles
in the decay chain are given in Table 1.2 104 events are generated using MadGraph
4.4.49 at the parton level to reduce the statistical fluctuations. In this section we

do not include experimental smearing and backgrounds, and assume no combinatorial
problem. These issues will be discussed in the next section when we deal with realistic

experimental situations. The invariant mass-squared distribution of the two visible
particles is shown in Fig. 2. The distribution has an end point which can be clearly

identified. The triangular shape of the distribution is a characteristic of the spin-1/2
intermediate state (chargino) in the decay chain. Now we would like to look at the
distribution of the energy ratios. Because in hadron colliders, the center of mass of the

2This point has been ruled out at the LHC. However, we just use this point for the purpose of
illustration. The method that we develop is independent of the overall mass scale of the spectrum.
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(LM2 point)

log(Δ1/Δ2)



New kinematic variable

• Taking the ratio of 2 linear equations, we derive

and take the ratio between these two equations. We have

∆1 + 2p1p2
∆2

=
p1pY
p2pY

=
E1EY − !p1 · !pY
E2EY − !p2 · !pY

=
E1EY − |!p1||!pY | cos θ1Y
E2EY − |!p2||!pY | cos θ2Y

∣

∣

∣

∣

lab

=
E1EY (1− βY cos θ1Y )

E2EY (1− βY cos θ2Y )

∣

∣

∣

∣

lab

=
E1(1− βY cos θ1Y )

E2(1− βY cos θ2Y )

∣

∣

∣

∣

lab

, (2.3)

where the cos θ1(2)Y is the angle between particle 1(2) and particle Y , the subscript
“lab” indicates that the angles are measured in the lab frame and βY is the magnitude

of the velocity (boost) of particle Y , defined as βY = |!pY |/EY . It is easy to see that
Eq. (2.3) reduces to the simple relation, ∆1/∆2 = E1/E2, when particle 1 & 2 are
parallel to each other. Now taking the logarithm of Eq. (2.3) we obtain

log
E1

E2
= log

∆1 + 2p1p2
∆2

+ log
1− βY cos θ2Y
1− βY cos θ1Y

∣

∣

∣

∣

lab

= log
∆1 + 2p1p2

∆2
+ log

1 + βY cos θ1Y
1 + βY cos θ2Y

∣

∣

∣

∣

Y

, (2.4)

where the subscript “Y ” denotes that the angles are measured in the rest frame of

particle Y . More specifically, cos θ1(2)Y
∣

∣

Y
is the angle between particle 1(2) (measured

in the rest frame of particle Y ) and particle Y (measured in the lab frame). From the
first line to the second line of Eq. (2.4) we simply perform a Lorentz transformation

and use (assuming particle 1 & 2 are massless)

cos θ1(2)Y
∣

∣

lab
=

cos θ1(2)Y + βY

1 + βY cos θ1(2)Y

∣

∣

∣

∣

Y

. (2.5)

The reason for writing the expression in terms of the angles in the rest frame of particle
Y is that cos θ2Y

∣

∣

Y
is directly related to the polarization of particle Y .

The left-hand side of Eq. (2.4) can be measured experimentally. The first term
on the right-hand side of the equation involves the unknown masses to be determined
and the invariant mass of the visible particles which is also measurable. The second

term on the on the right-hand side, on the other hand, is not measurable on an event-
by-event basis. It involves the unknown momentum of the invisible particle Y . If we

plot the events on the log(E1/E2) vs. 2p1p2 plane, this term causes the spread in the
vertical direction. Nevertheless, if the directions of particles 1 and 2 measured in the
rest frame of Y are not correlated with the direction of Y itself, we expect that the

second term will be evenly distributed around zero and peak at zero, as most events
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If the 2nd term is randomly distributed around 0, 
then we can fit the distribution with a curve

are produced with small βY if Y directly comes from the collision. In this case, we can
fit the distribution with a two-parameter curve

log
E1

E2
= log

D1 + 2p1p2
D2

, (2.6)

which has the least total χ2 measured in vertical distances. Consequently, the two
fitted parameters D1, D2 give estimates of the two mass-squared differences ∆1, ∆2.

As a result, ∆1 and ∆2 can be determined individually, not just their ratio. Combined
with the end point of the invariant mass-squared, ∆1∆2/m2

X , they can be inverted to

solve all 3 unknown masses. In practice, Eq. (2.4) can be applied in any longitudinal
frame as we can give this system an arbitrary longitudinal boost. In particular, one

can boost each event to a frame where E1/E2 = E1T /E2T . This in general removes a
large longitudinal boost of the mother particle Y which happens when the center of
mass of the collision is highly boosted. Therefore, we can use the distribution in the

log(E1T/E2T ) vs. 2p1p2 space instead. As shown later in this section, we find that
the fit in the transverse energy ratio space works somewhat better than in the total

energy ratio space for most of the cases. Other reasons: less spread? better

measured?...

Fig. 4 shows the fitted result of the scatter plot of Fig. 3. The red curve is the
function

log
ET1

ET2
= log

∆1 + 2p1p2
∆2

(2.7)

for true ∆1 and ∆2. The blue curve is the least square fit to the data of the same

function (2.7) but treating ∆1, ∆2 as fitting parameters. We can see that indeed the

two curves are very close to each other. The term log 1+βY cos θ1Y
1+βY cos θ2Y

∣

∣

∣

∣

Y

is indeed evenly

distributed around zero in this frame for this case. Assuming that we can measure the
invariant mass end point accurately, we can then reconstruct the 3 invisible particle

masses mY , mX , mN with the fitted values for ∆1 and ∆2. The result is shown in
Table 2. We see that, compared to the true values, the reconstructed masses are quite
accurate.

We have checked this mass reconstruction method for models with different mass
spectra and different particle spins in the decay chain, and we find that it works well

for a wide range of different models and spectra. Show a couple more examples

here? However, there are two cases where our method fails:

1. The mother particle Y is polarized and preferentially emits particle 2 in the
forward or backward direction when it decays. In this case it is clear that cos θ2Y

∣

∣

Y
will

have a nonzero average value. On the other hand, the direction of the particle 1 is less
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to extract Δ1 and Δ2 individually.  Plus the invariant 
mass end point, we can solve for 3 masses.



New kinematic variable

It works well for a wide varieties of models and 
spectra at the parton level.
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fitted
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Figure 4. The scatter plot of log (ET1/ET2) vs. 2p1p2 for all the events. The red curve

is log (ET1/ET2) = log (∆1+2p1p2
∆2

). The blue curve is a least square fit to the data with the

same function, treating ∆1 and ∆2 as unknown parameters. The standard deviations for all

the points are assumed to be the same.

∆1[GeV2] ∆2[GeV2] log (∆1/∆2) mY [GeV] mX [GeV] mN [GeV]

true 1.310× 105 3.875× 105 −1.08 777 465 292

reconstructed 1.370× 105 3.838× 105 −1.03 780 473 295

error +4.6% −0.96% +5.5% +0.34% +1.8% +1.0%

Table 2. True values, reconstructed values and the errors of the six quantities for the fit

to all the events. The errors are calculated using reconstructed−true
true (except for log (∆1/∆2),

which is reconstructed − true) and do not represent the statistical fluctuation. In solving for

the masses, we have used the true invariant mass end point value assuming that it can be

accurately determined. The uncertainly in determining ∆1∆2

m2

X

will add additional error on the

reconstructed values.

correlated with the polarization of the mother particle Y . The term log 1+βY cos θ1Y
1+βY cos θ2Y

∣

∣

∣

∣

Y
will no longer be distributed evenly around zero, but has a bias depending on the

cos θ2Y
∣

∣

Y
distribution. By Taylor expanding the expression

log
∆1 + 2p1p2

∆2
= log

∆1

∆2
+

2p1p2
∆1

+ · · · , (2.8)

we see that the curve has the intercept log(∆1/∆2) at 2p1p2 = 0 and the slope 1/∆1 to

the first order. If 〈cos θ2Y
∣

∣

Y
〉 > 0, we will obtain a fitted ∆1 (also ∆2 since their ratio

– 10 –

50000 100000 150000 200000 250000 300000 2p1p2!GeV2"

!3

!2

!1

1

2

3

log#ET1$ET2%

fitted

true

Figure 4. The scatter plot of log (ET1/ET2) vs. 2p1p2 for all the events. The red curve

is log (ET1/ET2) = log (∆1+2p1p2
∆2

). The blue curve is a least square fit to the data with the

same function, treating ∆1 and ∆2 as unknown parameters. The standard deviations for all

the points are assumed to be the same.

∆1[GeV2] ∆2[GeV2] log (∆1/∆2) mY [GeV] mX [GeV] mN [GeV]

true 1.310× 105 3.875× 105 −1.08 777 465 292

reconstructed 1.370× 105 3.838× 105 −1.03 780 473 295

error +4.6% −0.96% +5.5% +0.34% +1.8% +1.0%

Table 2. True values, reconstructed values and the errors of the six quantities for the fit

to all the events. The errors are calculated using reconstructed−true
true (except for log (∆1/∆2),

which is reconstructed − true) and do not represent the statistical fluctuation. In solving for

the masses, we have used the true invariant mass end point value assuming that it can be

accurately determined. The uncertainly in determining ∆1∆2

m2

X

will add additional error on the

reconstructed values.

correlated with the polarization of the mother particle Y . The term log 1+βY cos θ1Y
1+βY cos θ2Y

∣

∣

∣

∣

Y
will no longer be distributed evenly around zero, but has a bias depending on the

cos θ2Y
∣

∣

Y
distribution. By Taylor expanding the expression

log
∆1 + 2p1p2

∆2
= log

∆1

∆2
+

2p1p2
∆1

+ · · · , (2.8)

we see that the curve has the intercept log(∆1/∆2) at 2p1p2 = 0 and the slope 1/∆1 to

the first order. If 〈cos θ2Y
∣

∣

Y
〉 > 0, we will obtain a fitted ∆1 (also ∆2 since their ratio
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Figure 5. Histograms of log (ET1/ET2) for different ranges of invariant masses. The chart

on the righthand side indicates the range of invariant masses as a multiple of ∆1∆2

m2

X

for each

histogram. The histograms have approximate Gaussian shapes.
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!1.0

!0.8
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!0.2
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fitted
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Figure 6. The events are divide into 20 sets with equal width (0.05 × ∆1∆2

m2

X

) of invariant

mass. For each set we extract the peak value by fitting with a Gaussian distribution. The

horizontal coordinate (2p1p2) of each point is the middle point of each division. By doing this

we have 20 points of peak values and we fit it with the curve log (ET1/ET2) = log (∆1+2p1p2
∆2

)

, treating ∆1 and ∆2 as unknown parameters. The peak points and fitted curve are shown in

blue. The red curve is log (ET1/ET2) = log (∆1+2p1p2
∆2

) with true values of ∆1 and ∆2. The

error bar of each points is estimated by the formula σ[x̄] = σ[x]
√

N
, where σ[x] is obtained from

the Gaussian fit and N is the number of events in the set.

The errors in Table 2 and Table 3 could be a combination of both systematic and

statistical errors. Nevertheless, they are quite small and both reconstructions are good.
To further verify the goodness of our results, we repeated the event generation 5 times
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for 104 parton-level events



Comments

• When the mother particle Y is polarized, it 
creates a bias.

• If Δ2 (or Δ1) too small, the pT cut may induce a 
fake polarization.  The width effect may also cause 
a bias.

• Many issues in a real experiment:

- Selecting signals from backgrounds.

- Experimental smearing.

- Combinatorial problems.



Combinatorial problems

• Between the 2 visible particles on the decay chain:

Only |log(ET1/ET2)| can be measured. The 
distribution is folded along the log(ET1/ET2)=0 axis. It 
causes difficulties if the center of the distribution is 
close to that axis. 

• Between a visible particle on the decay chain and 
another particle somewhere else:

ISR jet affects the distribution at small invariant 
masses. Particles from the other decay chain affect 
large invariant mass region.  We can still fit the 
middle region to estimate Δ1 and Δ2.



Conclusions
• Many kinematic techniques and variables have 

been developed for new physics signals with 
missing energies.  They are useful for both 
searches and mass measurements.

• Now there are uniform ways to understand the 
physical meaning of these variables and to search 
for new variables and techniques.

• Once the masses of new particles are measured, 
they can be used to reconstruct the kinematics 
of the new physics events, which will allow more 
detailed measurements of other properties such 
as spins and couplings.


